博客
关于我
可视化_将两条曲线画在一个图中
阅读量:382 次
发布时间:2019-03-05

本文共 1474 字,大约阅读时间需要 4 分钟。

简单的密集连接网络在耶拿温度预测任务上的训练与验证损失曲线展示了模型训练的整体表现。本文通过绘制训练损失和验证损失的变化趋势,分析了模型在训练过程中的优化情况。以下是相关代码和结果的详细说明:

代码清单如下:

import matplotlib.pyplot as pltloss = history.history['loss']val_loss = history.history['val_loss']epochs = range(len(loss))plt.figure()plt.plot(epochs, loss, 'bo', label='Training loss')plt.plot(epochs, val_loss, 'b', label='Validation loss')plt.title('Training and validation loss')plt.legend()plt.show()

代码中,lossval_loss 分别表示训练过程中的损失值和验证过程中的损失值,epochs 列出训练的轮次。通过绘制这两个损失曲线,可以直观地观察模型在训练过程中的损失变化情况。

结果如下:

训练过程中,模型的损失值逐渐下降,表明模型在优化过程中效果不断提升。同时,验证损失值也随之下降,显示了模型在训练数据外的泛化能力。具体数值如下:

  • 训练损失:[1.571558004796505, 0.4991003686189652, 0.3011927672326565, 0.2678608466684818, 0.25595426523685455, 0.24517172515392305, 0.23824044767022132, 0.23298490041494369, 0.22821045821905137, 0.2227226406633854, 0.2185874055325985, 0.21574989056587218, 0.21279067119956016, 0.210872103959322, 0.20845433309674263, 0.20609600335359574, 0.20415313729643822, 0.20333791476488114, 0.20114947184920312, 0.19921788474917412]

  • 验证损失:[0.8748725497482347, 0.3975294645299217, 0.3109697792993953, 0.32736822754454703, 0.32925783149578325, 0.3136130665345372, 0.3221883660155713, 0.3522020755638459, 0.32485968480552746, 0.3193821293605862, 0.3482952474704877, 0.34307795770766675, 0.32300440624104365, 0.3191545883966283, 0.33410712029247197, 0.34500235922256745, 0.3459017112153559, 0.35247658667855825, 0.3340611231497577, 0.3364521464519445]

从上述结果可以看出,训练损失和验证损失均随着训练次数的增加而逐渐降低,表明模型在耶拿温度预测任务上的性能持续改进。

转载地址:http://gmrg.baihongyu.com/

你可能感兴趣的文章
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
numpy.linalg.norm(求范数)
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>
numpy中的argsort的用法
查看>>
NumPy中的精度:比较数字时的问题
查看>>
numpy判断对应位置是否相等,all、any的使用
查看>>
Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
查看>>
Numpy如何使用np.umprod重写range函数中i的python
查看>>
numpy学习笔记3-array切片
查看>>